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Machine Unlearning: Motivation

o Why care about machine unlearning? Companies collect user data to train their
ML models. Users may later request that their personal records be deleted.

o The resulting concern and motivation: Does the deployed model still encode
information about the removed data? Re-training from scratch for every deletion
request is prohibitively expensive, motivating the field of machine unlearning.

o The goal of machine unlearning: It is to address the problem of efficiently
removing the influence of individual data points from trained models.

o Privacy for users: It enables them to exercise their right to be forgotten.
o Accuracy for company: It retains the generalization capabilities of the model.
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What is machine learning?
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A mathematical framework of for GLM under ERM learning

o Dataset that company receives: We assume that company receives the dataset
D :={zi = (xi,yi) }_, with features x; € R” and y; € R the response.

o Generalized linear model assumption on the dataset: We assume that the data
points {z;}7_, are IID from Pg. (x,y) = p(x)g(y|x" B*) with unknown B* € R”.

o Empirical risk minimization framework of learning: The goal of a learning
procedure A is to learn B* from ,. We choose to find it by optimizing a loss L.

RERM: ﬁ =A(%y,) :=argmin L(f):= argminZE(yi,xiTﬁ) +Ar(B).
BeR? BeR? =1

o Comments: Popular choices of the loss /(y,z) includes —logg(y|z) and the
regularizer includes ridge (#(8) = ||B3) or Lasso (r(B) = ||B]1).
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A closer look at (a version of) the problem of machine unlearning

o Relearning: Given dataset &, = {z;}_, and a trained model B = A(Z,) some subset
A C |n] of users want their data & 4 := {z;}ic. to be removed. An ideal unlearning
procedure is to retrain A from scratch on the remaining dataset 2\  := %, \P.u.

B.w=A(D 4):=argmin L, ,(B):=argmin ¥ £(y;,x] B)+Ar(B).
BeR” BER" gy

o Unlearning: We want to avoid full retraining from scratch A(%, ), but also want to
obscure residual information & ,. We hope to construct a randomization procedure A.

Unlearning procedure: B\/// =AB, 2 4. T(%y),b)

o Comments: We assume A has access to removal requests Z 4, trained model ﬁ and
some auxiliary information 7'(Z,) such as gradient or Hessian of loos function L on
Dy, at B. b is a noise independent of %, to be added during the unlearning step.
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Desiderata for our unlearning procedure A

We need efficient procedure A protecting user privacy and preserving model accuracy.
o Efficiency: We need A to be far more efficient than retraining from scratch AP )

o Privacy: We need the two distributions to be ‘indistinguishable’ to an adversary.
Relearned: A(B\//,,(D,T(@\J,/),b)l vs. Unlearned: A(,%.,,T(2),b)

o Accuracy: We need the unlearned output A(, 2.4, T(2),b) to have the same
generalization capabilities as that of 3, , on a fresh sample from the population Pg-.

Now we precisely describe the privacy and accuracy requirements for the unlearning
procedure A.

Hdeally this should have been just 3 _w but that requires the original algorithm A to be randomized!
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Formulation of privacy using ROC
curves
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Hypothesis testing and Receiver Operating Characteristic curves I

Definition (Trade-off function)

Given two probability distributions P, Q on a measurable space (#,. %y ), we define the
trade-off function as the map T'(P,Q) : [0,1] — [0,1] as

T(PQO)(a):= inl)f{ﬁ(p =Ep[l — o] ‘ oy :=Eplo] <o, ¢: % —[0,1] measurable}.
o In words, for any given type I error ¢, the trade-off function returns the smallest

possible value of type II error B, over all possible test functions ¢: % — [0,1].
o Neyman-Pearson lemma: Optimal choice of ¢ is given by a likelihood ratio test?.

d d
o(x)=1 (logd—g > Za) such that P (logd—g > Za)) =

2Sometimes we need to consider randomized likelihood ratio test!
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Blackwell ordering and ROC curves 11

e TOF: A function f: [0,1] — [0, 1]
is a trade-off curve T (P, Q) if and
only if it is convex, continuous,
non-increasing, and f(o) < 1—o.

o Blackwell ordering : If
TPO,QO((X> > TP17Q1 ((X) for all c,
then (P;, Q) is easier to
distinguish than (P, Qo).

o Complete indistinguishability:

——— f(a) =1— a means random

0002 0a 06 08 10 guess ROC with Bernoulli(o).

type | error

type Il error
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Blackwell’s theorem and ROC curves III

Theorem (Equivalence of Blackwell informativeness and post-processing)

Let P, Q1 be probability measures on Y| and Py, Qg be probability measures on Yy. The
following two statements (Blackwell informativeness and post-processing) are equivalent:

Q Blackwell ordering: T (Py,Qo)(ot) > T (P, 01)(@) forall a € [0,1].
Q Post-processing: 3 a Markov Kernel R: Y) — Y, such that (Py, Qo) =(R(P),R(Q1)).

o Gaussian trade-off function: Let ® be the Gaussian CDF. Then we have
Ge(a) :=T(N(0,1),N(g,1))(ax) = (P! (1 — &) — €) for € > 0.

o Gaussian comparison: 7 (P,Q) > G, means it is at least as difficult to distinguish
the pair (P, Q) than it is to a pair of Normals with one having a shifted mean.
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Back to machine unlearning — Desiderata for unlearning procedure A

o Recall that we need the two distributions to be ‘indistinguishable’ to an adversary.

Relearned: &7, ::A(ﬁ\%,(b,T(@\//{),b) vs. Unlearned: P, :=A(B,2.4,T(2),b)

Definition (f-certifiability [Pandey et al., 2025] )

Given ¢ > 0,m € [n] and P, Py, as defined above (13), and a trade-off curve
£:[0,1] = [0, 1], we say unlearning algorithm A satisfies ¢-probabilistically certified data
removal property with respect to f if the following holds (with high probability).

IPL n win(T(Pre, Pan) (@), T(Fans Pre) (@) 2 () forallae[O,l]] >1-0¢

where the probability P is solely over the randomness of the data .
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Formulation of accuracy using fresh
samples
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Generalization error divergence

o Recall that we need the unlearned output A(B, Z 4, T(2),b) to have the same
generalization capabilities as that of ﬁ\ .« on a fresh sample from the population Pg-.

o Without such a criterion, an unlearning procedure A could output pure noise-achieving
perfect user privacy at the cost of severely degraded model performance.

Definition (Generalization Error Divergence [Zou et al., 2025])
Given IID dataset 7, = {(x;,y;)}_, from GLM 6 for training A, and a fresh IID sample

(x0,¥0) let £(y|x” B) be a measure of error between y and x” 8. Then we define the GED of
the learning-unlearning pair (A,A) on %, with data removal requests 7. as:

GED((A,A: M , D) :=E ([[L(0olx0 AP i) — L0l AA( D), Dot T (D) b)) || | )

where we condition on the randomness of the data set ,, and average over the randomness
of the unlearning algorithm A, as well as that of the test data point (xg, o).
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A Newton-Raphson based unlearning
procedure
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Our unlearning procedure A(B, 2 4, T(%,),b)

o Approximation: Starting from ﬁ, we run one step of the Newton method to obtain:

Bl) =B—G(Ly.a) ' BIVLL4(B), (1)
where G(L, ) is the Hessian of L, , defined in (7).

o e . Al .. A .
o Randomization: Note that since Bg/)/[ differs from ,B\ _u~ the difference between the
two vectors may reveal information about the data to be removed, & ,. Hence, a
standard practice is to hide the data by adding random noise,

Bou=AB.2.4.T(%),b) =B} +b. @

We choose b ~ N(0, Gzlp). The choice of ¢ is to balance privacy with accuracy.
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The things that we want to achieve

The main aim of an unlearning procedure A(f,2 4, T(Z,),b) is to achieve

o Privacy: Under the high-dimensional setting n, p — e and n /p — ¥, how should we
set the value of o to ensure that B, , satisfies f— certifiability with f = G¢?

@ Accuracy: Can we make the generalization error divergence of [~3\ _w £0 to zero as
n, p — o while n/p — 7, given the choice of ¢ as above.
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Our results I- Gaussian certifiability in high dimensions

Theorem (€-Gaussian certifiability [Pandey et al., 2025])

Under some mild assumptions® on 1, and r as well as Gaussianity assumptions on the data
x there exist Cy(n),Ca(n) = O(polylog(n)) for which the randomized one-step Newton
unlearning (2) procedure when used with a perturbation vector b ~ N <O, gzlp), achieves
On,-Gaussian certifiability with

Cy(n)m3

r=Ci(n) avn O :nqg,y) +8n 3 +ne P2 4277 — 0.

“These are separability, convexity, smoothness, polynomial boundedness assumptions on /, and r.
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Our results II- Vanishing generalization gap after one step

Theorem (Vanishing change in model accuracy [Pandey et al., 2025])

Consider the unlearning estimator defined in (2) with the noise variance set according to

above Theorem 5, along with assuming the same setting. Then, with probability at least
1—(n+ l)q,g” —14n3 —ne P2 —2¢ 7P — ¢~ (1-lo2)p,

GED(B-B.) < VG 5+ ) "2 o).
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Overall message

o If we set the variance of the Gaussian noise as suggested by the certifiability Theorem
5, the unlearning algorithm that is based on one-Step of the Newton method offers:

GED(B\ 4, B\) = 0p(1) if m = o(n? %) for arbitrary & >0

@ Both theorems are valid in high-dimensional settings where n, p — oo, while n/p — 7.

o Why care? [Zou et al., 2025] introduced the high-dimensional setting into the
machine unlearning literature. It showed that under a ‘different notion’ of
certifiability even for removing a single data point, at least two Newton steps are
required to ensure GED(B%,ﬁ\J/{) =0,(1).

o The sharp contrast between their conclusion and ours highlights the subtle interplay
between perturbation methods, certifiability definitions, and prediction accuracy.
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Trade off functions and (&, d) Differential privacy

Definition ((&, 0) differential privacy)

A randomized algorithm M that takes as input a dataset consisting of individuals is (g, §)
differentially private (DP) if for any pair of datasets S,S’ that differ in the record of a single
individual, and any event E, (when & = 0, the guarantee is simply called €-DP.)

PM(S) € E] <e°P[M(S') €E|+6.

Definition (Trade off function)

For two probability distributions P and Q on a space (Z,.% ), define the trade-off function
T(P,Q):[0,1] — [0, 1] with the infimum taken over all (measurable) rejection rules.

T(P,Q)(ot) = inf{By :=Eg[l — @] : atp :=Ep[@] < 0,9 : (2", F) — [0,1] Borel}
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Trade off functions and Neyman-Pearson lemma

A function f : [0,1] — [0, 1] is a trade-off function (for some distributions P,Q on Z") if
and only if f is convex, continuous , non-increasing, and f(x) < 1—xforx € [0,1].

Theorem (Neyman-Pearson lemma)

Let P and Q be probability distributions on Q with densities p and g, respectively. A test

¢ : Q — [0, 1] achieves T (P,Q)(e) if and only if there are two constants h € [0, +oo] and
¢ € [0, 1] such that ¢ has the form (with Ep[@] = o)

1, ifp(w)>hg(o)
p(®)=1qc, ifp(w)=nhg(o).
0, ifp(w)<hq(w)
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Trade off functions and f-differential privacy

Definition (f-differential privacy)

Let f be a trade-off function. A mechanism M is said to be f-differentially private if

T (M(S),M (S')) = f for all neighboring datasets S and §'.

Proposition
A mechanism M is (&,8) DP if and only if M is f, s — DP.

fes(a) =max{0,1 -8 —ea,e ?(1-6—0)}
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Properties of Trade off functions

Let a mechanism M be f-DP. Then, M is fS-DP with f5 = max { f.f! }, where
f (@) :=inf{r €[0,1]: f() < a} for a € [0,1] with f5 = (fS)‘1
epi(f) :={(a,B) | €0,1], f(a) <B<1—-0}
epi(f) = {(a,Bp) | ¢ : @ — [0,1] measurable, 0ty + fp < 1}.

Lemma

f and epi(f) are equivalent and if f = T (P,Q), then f~' = T(Q,P).

Operations Research and Financial Engineering, Princeton University
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Examples of Trade off functions and Blackwell ordering

Proposition

Let & ~ P on R with density p, CDF F : R — [0, 1], quantile F~' : [0,1] — [—oo, +o0].
Then T (&,t+&)(a) =F (F~'(1—a) — 1)Vt > 0 if and only if p is log-concave.

Proposition
For any two distributions P and Q, we have T(R(P),R(Q)) = T (P,Q). As a consequence if
a mechanism M is f-DP, then its post-processing RoM is also f-DP.

Theorem (Blackwell’s informativeness theorem)

Let P,Q be distributions on'Y and P',Q’ be distributions on Z. TFAE
o T(P.O)<T(P,Q).
o JaKernelR:Y — Z such that (R(P),R(Q)) = (P',Q).
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Primal Dual perspective of Trade off functions

Proposition

Let I be an arbitrary index set associated with €; € [0,00) and &; € [0,1] foriel. A
mechanism is (&, 8;)-DP for all i € I if and only if it is f-DP with f = sup,c; fe. s,

&)= sup yx—gx)forg:R—R

—co<x <00
£:10,1] = [0,1] we set f(x) = oo forx € (—e0,0) U (1,00) (supremum is over 0 < x < 1).

Proposition (Envelope theorem)

For a symmetric trade-off function f, a mechanism is f-DP if and only if it is
(¢,0(g)) —DP for all € > 0 with §(¢) = 1+ f* (—e®). As a consequence a mechanism is
W GDP if and only if it is (€,8(€)) — DP for all € > 0, where

o el 58 w5 )
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Group privacy

Theorem (Group-privacy lift for f-DP)

For distributions P,Q,R on 2, if T(P,Q) < f, and T(Q,R) < g then T(P,R) < go f. Asa
consequence if a mechanism M satisfies f-DP, then it satisfies ( f Ok) -DP with respect to
groups of size k € N. In particular, L-GDP implies kiL-GDP for groups of size k.

Proposition (Laplace limit of group-privacy for €-DP)

Fix u > 0and set € = L /k. As k — oo, fs"% — T(L(O, 1),L(u, 1))unif0rmly on [0,1].

1—-éa, 0<a<e™)/2

Tro,1) 0w (@) = e /4o, eH2<a<t

efl-a), I<a<l.
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Composition and limit theorem
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Represenation of functionals satisfying data-processing inequalities

IfD(R(P),R(Q)) < D(P,Q) for probability distributions P,Q and Markov kernels R, then
there exists a functional lp : .# — R such that D(P,Q) = Ip(T (P, Q)).

ddy, Haolin Zou, Arian Maleki, Sanjeev Kulkarni ions Research and Financial Engineering.
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