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Machine Unlearning: Motivation

Why care about machine unlearning? Companies collect user data to train their
ML models. Users may later request that their personal records be deleted.

The resulting concern and motivation: Does the deployed model still encode
information about the removed data? Re-training from scratch for every deletion
request is prohibitively expensive, motivating the field of machine unlearning.
The goal of machine unlearning: It is to address the problem of efficiently
removing the influence of individual data points from trained models.

Privacy for users: It enables them to exercise their right to be forgotten.
Accuracy for company: It retains the generalization capabilities of the model.
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A mathematical framework of machine learning for GLM under ERM learning

Dataset that company receives: We assume that company receives the dataset
Dn := {zi = (xi,yi)}n

i=1 with features xi ∈ Rp and yi ∈ R the response.

Generalized linear model assumption on the dataset: We assume that the data
points {zi}n

i=1 are IID from Pβ ∗(x,y) = p(x)q(y|xT β ∗) with unknown β ∗ ∈ Rp.

Empirical risk minimization framework of learning: The goal of a learning
procedure A is to learn β ∗ from Dn. We choose to find it by optimizing a loss L.

RERM: β̂ = A(Dn) := argmin
β∈Rp

L(β ) := argmin
β∈Rp

n

∑
i=1

ℓ(yi,x⊤i β )+λ r(β ).

Comments: Popular choices of the loss l(y,z) includes − logq(y|z) and the
regularizer includes ridge (r(β ) = ∥β∥2

2) or Lasso (r(β ) = ∥β∥1).
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A closer look at (a version of) the problem of machine unlearning

Relearning: Given dataset Dn = {zi}n
i=1 and a trained model β̂ = A(Dn) some subset

M ⊂ [n] of users want their data DM := {zi}i∈M to be removed. An ideal unlearning
procedure is to retrain A from scratch on the remaining dataset D\M := Dn \DM .

β̂\M := A(D\M ) := argmin
β∈Rp

L\M (β ) := argmin
β∈Rp

∑
i/∈M

ℓ(yi,xT
i β )+λ r(β ).

Unlearning: We want to avoid full retraining from scratch A(D\M ), but also want to
obscure residual information DM . We hope to construct a randomization procedure Ā.

Unlearning procedure: β̃\M := Ā(β̂ ,DM ,T (Dn),b)

Comments: We assume Ā has access to removal requests DM , trained model β̂ and
some auxiliary information T (Dn) such as gradient or Hessian of loos function L on
Dn, at β̂ . b is a noise independent of Dn to be added during the unlearning step.
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Desiderata for our unlearning procedure Ā

We need efficient procedure Ā protecting user privacy and preserving model accuracy.

Efficiency: We need Ā to be far more efficient than retraining from scratch A(D\M ).

Privacy: We need the two distributions to be ‘indistinguishable’ to an adversary.

Relearned: Ā(β̂\M , /0,T (D\M ),b)1 vs. Unlearned: Ā(β̂ ,DM ,T (D),b)

Accuracy: We need the unlearned output Ā(β̂ ,DM ,T (D),b) to have the same
generalization capabilities as that of β̂\M on a fresh sample from the population Pβ ∗ .

Now we precisely describe the privacy and accuracy requirements for the unlearning
procedure Ā.

1Ideally this should have been just β̂\M but that requires the original algorithm A to be randomized!
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Formulation of privacy using ROC
curves
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Hypothesis testing and Receiver Operating Characteristic curves I

Definition (Trade-off function)

Given two probability distributions P,Q on a measurable space (W ,FW ), we define the
trade-off function as the map T (P,Q) : [0,1]→ [0,1] as

T (P,Q)(α) := inf
φ

{
βφ := EQ[1−φ]

∣∣∣ αφ := EP[φ]≤ α, φ : W → [0,1] measurable
}
.

In words, for any given type I error α , the trade-off function returns the smallest
possible value of type II error βφ over all possible test functions φ : W → [0,1].
Neyman-Pearson lemma: Optimal choice of φ is given by a likelihood ratio test2.

φ(x) = 1
(

log
dQ
dP

≥ zα

)
such that P

(
log

dQ
dP

≥ zα)

)
= α

2Sometimes we need to consider randomized likelihood ratio test!
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Blackwell ordering and ROC curves II

TOF: A function f : [0,1]→ [0,1]
is a trade-off curve T (P,Q) if and
only if it is convex, continuous,
non-increasing, and f (α)≤ 1−α .

Blackwell ordering : If
TP0,Q0(α)≥ TP1,Q1(α) for all α ,
then (P1,Q1) is easier to
distinguish than (P0,Q0).

Complete indistinguishability:
f (α) = 1−α means random
guess ROC with Bernoulli(α).
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Blackwell’s theorem and ROC curves III

Theorem (Equivalence of Blackwell informativeness and post-processing)
Let P1,Q1 be probability measures on Y1 and P0,Q0 be probability measures on Y0. The
following two statements (Blackwell informativeness and post-processing) are equivalent:

1 Blackwell ordering: T (P0,Q0)(α)≥ T (P1,Q1)(α) for all α ∈ [0,1].
2 Post-processing: ∃ a Markov Kernel R: Y1 → Y0 such that (P0,Q0) =(R(P1),R(Q1)).

Gaussian trade-off function: Let Φ be the Gaussian CDF. Then we have
Gε(α) := T (N(0,1),N(ε,1))(α) = Φ(Φ−1(1−α)− ε) for ε ≥ 0.

Gaussian comparison: T (P,Q)≥ Gε means it is at least as difficult to distinguish
the pair (P,Q) than it is to a pair of Normals with one having a shifted mean.
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Back to machine unlearning – Desiderata for unlearning procedure Ā

Recall that we need the two distributions to be ‘indistinguishable’ to an adversary.

Relearned: Pre := Ā(β̂\M , /0,T (D\M ),b) vs. Unlearned: Pun := Ā(β̂ ,DM ,T (D),b)

Definition (f-certifiability [Pandey et al., 2025] )

Given ϕ > 0,m ∈ [n] and Pre,Pun as defined above (13), and a trade-off curve
f : [0,1]→ [0,1], we say unlearning algorithm Ā satisfies ϕ -probabilistically certified data
removal property with respect to f if the following holds (with high probability).

P
[

inf
|M |≤m

min(T (Pre,Pun)(α),T (Pun,Pre)(α))≥ f (α) for all α ∈ [0,1]
]
≥ 1−ϕ

where the probability P is solely over the randomness of the data D .
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Formulation of accuracy using fresh
samples
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Generalization error divergence

Recall that we need the unlearned output Ā(β̂ ,DM ,T (D),b) to have the same
generalization capabilities as that of β̂\M on a fresh sample from the population Pβ ∗ .
Without such a criterion, an unlearning procedure Ā could output pure noise-achieving
perfect user privacy at the cost of severely degraded model performance.

Definition (Generalization Error Divergence [Zou et al., 2025])

Given IID dataset Dn = {(xi,yi)}n
i=1 from GLM 6 for training A, and a fresh IID sample

(x0,y0) let ℓ(y|xT β ) be a measure of error between y and xT β . Then we define the GED of
the learning-unlearning pair (A, Ā) on Dn with data removal requests DM as:

GEDℓ(A, Ā;M ,Dn) := E
([∣∣ℓ(y0|xT

0 A(D\M ))− ℓ(y0|xT
0 Ā(A(Dn),DM ,T (Dn),b))

∣∣] |Dn
)
,

where we condition on the randomness of the data set Dn and average over the randomness
of the unlearning algorithm Ā, as well as that of the test data point (x0,y0).
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A Newton-Raphson based unlearning
procedure
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Our unlearning procedure Ā(β̂ ,DM ,T (Dn),b)

Approximation: Starting from β̂ , we run one step of the Newton method to obtain:

β̂ (1)
\M = β̂ −G(L\M )−1(β̂ )∇L\M (β̂ ), (1)

where G(L\M ) is the Hessian of L\M defined in (7).

Randomization: Note that since β̂
(1)
\M differs from β̂ \M , the difference between the

two vectors may reveal information about the data to be removed, DM . Hence, a
standard practice is to hide the data by adding random noise,

β̃\M = Ā(β̂ ,DM ,T (Dn),b) := β̂ (1)
\M +b. (2)

We choose b ∼ N(0,σ2Ip). The choice of σ is to balance privacy with accuracy.
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The things that we want to achieve

The main aim of an unlearning procedure Ā(β̂ ,DM ,T (Dn),b) is to achieve

Privacy: Under the high-dimensional setting n, p → ∞ and n/p → γ , how should we
set the value of σ to ensure that β̃\M satisfies f− certifiability with f = Gε?

Accuracy: Can we make the generalization error divergence of β̃ \M go to zero as
n, p → ∞ while n/p → γ , given the choice of σ as above.

Aaradhya Pandey joint with Arnab Auddy, Haolin Zou, Arian Maleki, Sanjeev Kulkarni Operations Research and Financial Engineering, Princeton University

Gaussian certified unlearning in high dimensions 18 / 31



Machine unlearning Formulation of Privacy Formulation of Accuracy Procedure and results GDP

Our results I– Gaussian certifiability in high dimensions

Theorem (ε-Gaussian certifiability [Pandey et al., 2025])

Under some mild assumptionsa on l, and r as well as Gaussianity assumptions on the data
x there exist C1(n),C2(n) = O(polylog(n)) for which the randomized one-step Newton
unlearning (2) procedure when used with a perturbation vector b ∼ N

(
0, r2

ε2 Ip

)
, achieves

ϕn,-Gaussian certifiability with

r =C1(n)

√
C2(n)m3

2λνn
, ϕn = nq(y)n +8n−3 +ne−p/2 +2e−p → 0.

aThese are separability, convexity, smoothness, polynomial boundedness assumptions on l, and r.
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Our results II- Vanishing generalization gap after one step

Theorem (Vanishing change in model accuracy [Pandey et al., 2025])

Consider the unlearning estimator defined in (2) with the noise variance set according to
above Theorem 5, along with assuming the same setting. Then, with probability at least
1− (n+1)q(y)n −14n−3 −ne−p/2 −2e−p − e−(1−log(2))p,

GED(β̃\M , β̂\M )≤C1(n)
√

C2(n)
(

1
ε
+

1
√

p

)√
m3(m+2)

λνn
· polylog(n).
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Overall message

If we set the variance of the Gaussian noise as suggested by the certifiability Theorem
5, the unlearning algorithm that is based on one-Step of the Newton method offers:

GED(β̃\M , β̂\M ) = op(1) if m = o(n
1
4−α) for arbitrary α > 0

Both theorems are valid in high-dimensional settings where n, p → ∞, while n/p → γ .

Why care? [Zou et al., 2025] introduced the high-dimensional setting into the
machine unlearning literature. It showed that under a ‘different notion’ of
certifiability even for removing a single data point, at least two Newton steps are
required to ensure GED(β̃M , β̂ \M ) = op(1).

The sharp contrast between their conclusion and ours highlights the subtle interplay
between perturbation methods, certifiability definitions, and prediction accuracy.
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Trade off functions and (ε,δ ) Differential privacy

Definition ((ε,δ ) differential privacy)
A randomized algorithm M that takes as input a dataset consisting of individuals is (ε,δ )
differentially private (DP) if for any pair of datasets S,S′ that differ in the record of a single
individual, and any event E, (when δ = 0, the guarantee is simply called ε-DP.)

P[M(S) ∈ E]⩽ eεP
[
M
(
S′
)
∈ E

]
+δ .

Definition (Trade off function)
For two probability distributions P and Q on a space (X ,F ), define the trade-off function
T (P,Q) : [0,1]→ [0,1] with the infimum taken over all (measurable) rejection rules.

T (P,Q)(α) = inf
{

βφ := EQ[1−φ] : αφ := EP[φ]≤ α,φ : (X ,F )→ [0,1] Borel
}
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Trade off functions and Neyman-Pearson lemma

Proposition
A function f : [0,1]→ [0,1] is a trade-off function (for some distributions P,Q on X ) if
and only if f is convex, continuous , non-increasing, and f (x)⩽ 1− x for x ∈ [0,1].

Theorem (Neyman-Pearson lemma)
Let P and Q be probability distributions on Ω with densities p and q, respectively. A test
φ : Ω → [0,1] achieves T (P,Q)(α) if and only if there are two constants h ∈ [0,+∞] and
c ∈ [0,1] such that φ has the form (with EP[φ] = α)

φ(ω) =


1, if p(ω)> hq(ω)

c, if p(ω) = hq(ω)

0, if p(ω)< hq(ω)

.
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Trade off functions and f -differential privacy

Definition ( f -differential privacy)
Let f be a trade-off function. A mechanism M is said to be f -differentially private if

T
(
M(S),M

(
S′
))

⩾ f for all neighboring datasets S and S′.

Proposition
A mechanism M is (ε,δ ) DP if and only if M is fε,δ −DP.

fε,δ (α) = max
{

0,1−δ − eεα,e−ε(1−δ −α)
}
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Properties of Trade off functions

Proposition

Let a mechanism M be f -DP. Then, M is f S-DP with f S = max
{

f , f−1
}

, where

f−1(α) := inf{t ∈ [0,1] : f (t)⩽ α} for α ∈ [0,1] with f S =
(

f S)−1

epi( f ) := {(α,β ) | α ∈ [0,1], f (α)⩽ β ⩽ 1−α}

epi( f ) =
{(

αφ ,βφ
)
| φ : Ω → [0,1] measurable, αφ +βφ ⩽ 1

}
.

Lemma
f and epi( f ) are equivalent and if f = T (P,Q), then f−1 = T (Q,P).
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Examples of Trade off functions and Blackwell ordering

Proposition

Let ξ ∼ P on R with density p, CDF F : R→ [0,1], quantile F−1 : [0,1]→ [−∞,+∞].
Then T (ξ , t +ξ )(α) = F

(
F−1(1−α)− t

)
∀t > 0 if and only if p is log-concave.

Proposition
For any two distributions P and Q, we have T (R(P),R(Q))⩾ T (P,Q). As a consequence if
a mechanism M is f -DP, then its post-processing R◦M is also f -DP.

Theorem (Blackwell’s informativeness theorem)
Let P,Q be distributions on Y and P′,Q′ be distributions on Z. TFAE

T (P,Q)⩽ T (P′,Q′).

∃ a Kernel R : Y → Z such that (R(P),R(Q)) = (P′,Q′).
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Primal Dual perspective of Trade off functions

Proposition
Let I be an arbitrary index set associated with εi ∈ [0,∞) and δi ∈ [0,1] for i ∈ I. A
mechanism is (εi,δi)-DP for all i ∈ I if and only if it is f -DP with f = supi∈I fεi,δi

g∗(y) = sup
−∞<x<∞

yx−g(x) for g : R→ R

f : [0,1]→ [0,1] we set f (x) = ∞ for x ∈ (−∞,0)∪ (1,∞) (supremum is over 0 ⩽ x ⩽ 1).

Proposition (Envelope theorem)
For a symmetric trade-off function f , a mechanism is f -DP if and only if it is
(ε,δ (ε))−DP for all ε ⩾ 0 with δ (ε) = 1+ f ∗ (−eε). As a consequence a mechanism is
µ GDP if and only if it is (ε,δ (ε))−DP for all ε ⩾ 0, where

δ (ε) = Φ
(
− ε

µ
+

µ
2

)
− eεΦ

(
− ε

µ
− µ

2

)
.
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Group privacy

Theorem (Group-privacy lift for f -DP)

For distributions P,Q,R on X , if T̄ (P,Q)≤ f̄ , and T̄ (Q,R)≤ ḡ then T̄ (P,R)≤ ḡ◦ f̄ . As a
consequence if a mechanism M satisfies f̄ -DP, then it satisfies

(
f̄ ◦k

)
-DP with respect to

groups of size k ∈ N. In particular, µ-GDP implies kµ-GDP for groups of size k.

Proposition (Laplace limit of group-privacy for ε-DP)

Fix µ > 0 and set ε = µ/k. As k → ∞, f̄ ◦k
ε,0 → T̄

(
L(0,1),L(µ,1)

)
uniformly on [0,1].

TL(0,1),L(µ,1)(α) =


1− eµα, 0 ≤ α < e−µ/2,

e−µ/4α, e−µ/2 ≤ α ≤ 1
2 ,

e−µ(1−α), 1
2 < α ≤ 1.
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Composition and limit theorem
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Represenation of functionals satisfying data-processing inequalities

Proposition
If D(R(P),R(Q))≤ D(P,Q) for probability distributions P,Q and Markov kernels R, then
there exists a functional lD : F → R such that D(P,Q) = lD(T (P,Q)).
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