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Background: The binary Stochastic block model

(Unobserved) Community labels σ∗ : [n]→{±1} such ⟨σ∗,1⟩= 0.

(Observed) A random graph G = ([n],E) with Adjacency matrix A such that

A(i, j) = A( j, i)∼

{
Ber(p) if σ∗(i) = σ∗( j)
Ber(q) if σ∗(i) ̸= σ∗( j)

(Task) Recover σ∗ exactly up to a global sign flip.

(Output) σ̂ : [n]→{±1} such that #{i ∈ [n] : σ̂(i) = σ∗(i)}= n.

(Regime of interest) p = a logn
n , q = b logn

n with a > b > 0 constants.

(Parameter of interest) SNR (a,b) = |
√

a−
√

b|√
2

.
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The Gaussian weighted stochastic block model (our model)

(Unobserved) Community labelling σ∗ : [n]→{±1} such ⟨σ∗,1⟩= 0.

(Observed) A weighted random graph G = ([n],(we)e∈(n
2)
) such that

A(i, j) = A( j, i)∼

{
N (µ1,τ2) if σ∗(i) = σ∗( j)
N (µ2,τ2) if σ∗(i) ̸= σ∗( j)

(Task) Recover σ∗ exactly up to a global sign flip.

(Output) σ̂ : [n]→{±1} such that #{i ∈ [n] : σ̂(i) = σ∗(i)}= n.

(Regime of interest) µ1 = α
√

logn
n , µ2 = β

√
logn

n with α > β and τ > 0 constants.

(Parameter of interest) SNR (α,β ) = |α−β |
τ
√

2
.

Aaradhya Pandey (Joint work with Sanjeev Kulkarni) Operations Research and Financial Engineering, Princeton University

Gaussian weighted stochastic block model 3 / 10



The objects of interest

σ̂MLE = argmax ∑i, j Ai jσiσ j = Tr(Aσσ T ) subject to σ ∈ {±1}n, ⟨σ ,1⟩= 0.

ŶSDP = argmax Tr(AY ) subject to Y ⪰ 0, Yii = 1 ∀ i ∈ [n], Tr(JY ) = 0.

σ̂Spec = sign(argmax ∑i, j Ai jviv j = Tr(AvvT ) subject to v ∈ Sn−1, ⟨v,1⟩= 0).
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Results: Binary and the Gaussian model

(previous results for the binary model)

If SNR(a,b) = |
√

a−
√

b|√
2

< 1

P(σ̂MLE = σ∗)↛ 1[ABH,2014]

If SNR(a,b) = |
√

a−
√

b|√
2

> 1

P(σ̂MLE = σ∗)→ 1[ABH,14]

P(ŶSDP = σ∗σ∗T )→ 1[HWX ,16]

P(σ̂Spec = σ∗)→ 1[AFY Z,19]

(our results for the Gaussian model)

If SNR (α,β ) = |α−β |
τ
√

2
< 1

P(σ̂MLE = σ∗)↛ 1

If SNR (α,β ) = |α−β |
τ
√

2
> 1

P(σ̂MLE = σ∗)→ 1

P(ŶSDP = σ∗σ∗T )→ 1

P(σ̂Spec = σ∗)→ 1
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Proof ideas

Statistical possibility and impossibility of the MLE is established through First and
Second Moment methods.

Proof for the Semidefinite Programming (SDP) estimator involves a clever dual
certificate argument.

Spectral estimator’s proof requires entrywise analysis of eigenvectors.
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Connections

It resolves the exact recovery problem for the planted spin glass (spiked Wigner).

It is also shown that exactly recovering two equal-sized community is an easier
problem than exactly recovering a densely weighted community of size n/2.

More precisely we need SNR(α,β ) > 2 to be able to exactly recover (through the
SDP procedure) a densely weighted community of size n/2.
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The Gaussian weighted planted dense subgraph model

(Unobserved) Community labelling σ∗ : [n]→{±1} such ⟨σ∗,1⟩= 0.

(Observed) A weighted random graph G = ([n],(we)e∈(n
2)
) such that

A(i, j) = A( j, i)∼

{
N (µ1,τ2) if σ∗(i) = σ∗( j)= 1
N (µ2,τ2) otherwise

(Task) Recover σ∗ exactly up to a global sign flip.

(Output) σ̂ : [n]→{±1} such that #{i ∈ [n] : σ̂(i) = σ∗(i)}= n.

(Regime of interest) µ1 = α
√

logn
n , µ2 = β

√
logn

n with α > β and τ > 0 constants.

(Parameter of interest) SNR (α,β ) = |α−β |
τ
√

2
.
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