AARADHYA PANDEY

Graduate student in Operations Research & Financial Engineering, Princeton University

☑ aaradhyapandey@princeton.edu | 🏕 https://aaradhyapandey98.github.io/aaradhyapandeycs.github.io/ | Nationality: Indian

Graduate and Undergraduate Education _____

Princeton University (advised by Sanjeev Kulkarni and Arian Maleki)

Princeton

PhD in ORFE with Gordon Wu fellowship: 'awarded to the most outstanding incoming doctoral students in engineering'

Sep. 2021 - present

Indian Institute of Science (IISc)

Bangalore

Bachelor of Science in mathematics with CGPA 9.6/10: discipline rank 1, was awarded the institute gold medal.

Sep. 2017 - Jun. 2021

Research Interests _____

My research interests are at the interface of probability theory, mathematical statistics, machine learning, and information theory with applications in (quantum) differential privacy, machine unlearning and spin glasses.

Publications and Preprints _____

- [1] Gaussian certified unlearning in high dimensions: a hypothesis testing approach. Aaradhya Pandey, Arnab Auddy, Haolin Zou, Arian Maleki, Sanjeev Kulkarni. arXiv:2510.13094 (submitted)
- [2] Exact recovery in Gaussian weighted stochastic block model and planted dense subgraphs: statistical and algorithmic thresholds. Aaradhya Pandey, Sanjeev Kulkarni. arXiv:2402.12515 (submitted)
- [3] Community detection in the hypergraph stochastic block model and reconstruction on hypertrees. Yuzhou Gu, Aaradhya Pandey. *Proceedings of the 37th Conference on Learning Theory*, PMLR 247:2166–2203. PDF | Proceedings

Projects in Preparation _____

- [1] Quantum f-differential privacy: a hypothesis testing approach. Aaradhya Pandey, Arian Maleki, Sanjeev Kulkarni.
- [2] Quantum infinitely divisible states: a genuinely quantum phenomenon. Aaradhya Pandey, Arian Maleki, Sanjeev Kulkarni.
- [3] Distributional machine unlearning: a hypothesis testing approach. Aaradhya Pandey, Arian Maleki, Sanjeev Kulkarni.
- [4] Multivariate version of the Ghirlanda Guerra identities: an application to the matrix of spin correlations for mean-field spin glasses. Aaradhya Pandey, Arian Maleki, Sanjeev Kulkarni.

Invited Talks and Presentations _____

May 2025	Gave a tutorial on Information theory and Differential privacy at TIFR CAM	Bangalore
May 2025	Presented my work on the Gaussian certified unlearning paper at IISc	Bangalore
Jan 2025	Presented my work on the Correlation matrix of spin glasses at IISc and TIFR CAM	Bangalore
Oct 2024	Presented my work on Stochastic block model papers at Michigan State University	Michigan
Feb 2024	Our joint work on Stochastic block model paper was presented at the Institute of Advanced Study	Princeton

Academic Service _

Teaching	Assisted in teaching undergraduate probability, statistics, game theory, networks, signals and systems classes	Princeton
Reviewing	Acted as a reviewer for journals Information and Inference, and Foundations of Computational Mathematics	Princeton
Organizing	Organized over several semesters a student reading group in High dimensional Probability and Statistics	Princeton

Selected Coursework _____

Credited	Topics classes in High-dimensional probability (ORF 550, Grade A), Statistical machine learning (ORF 570,	
	Grade A), Probabilistic methods (MAT 577, Grade A), Nonlinear models in econometrics (ECO 519, Grade A)	Princetor
	Classes in Phase transitions (PHV 525). Combinatorial antimization (MAT 572). Computational methods	

on

Audited

Classes in Phase transitions (PHY 535), Combinatorial optimization (MAT 572), Computational methods (MAT 586), Discrete probability (MAT 589), Condensed matter (MAT 595), Statistical mechanics (MAT 597)

Princeton

Fellowships and Achievements _____

2021 - 2026	Gordon Wu fellow: Awarded to the most outstanding incoming doctoral students in engineering	Princeton
NET 2020	Cleared with an all-India rank 1 in the entrance exam for mathematics PhD programs in India	India
2017 - 2021	KVPY fellow: Prestigious fellowship program for Indian undergraduate students interested in science	Bangalore
IIT JEE 2017	Cleared with an all-India rank of 305 (1 million participants) for undergraduate admission at IITs	India
Summer 2020	DAAD WISE: Prestigious fellowship for a funded summer project in Germany	Bonn

References _____

- Arian Maleki, Professor of Statistics, Columbia University 🖂 arian@stat.columbia.edu
- Sanjeev Kulkarni, William R. Kenan Jr. Professor of ECE and ORFE, Princeton University 🖾 kulkarni@princeton.edu